Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Mol Neurobiol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662299

RESUMO

Numerous neurological disorders share a fatal pathologic process known as glutamate excitotoxicity. Among which, ischemic stroke is the major cause of mortality and disability worldwide. For a long time, the main idea of developing anti-excitotoxic neuroprotective agents was to block glutamate receptors. Despite this, there has been little successful clinical translation to date. After decades of "neuron-centered" views, a growing number of studies have recently revealed the importance of non-neuronal cells. Glial cells, cerebral microvascular endothelial cells, blood cells, and so forth are extensively engaged in glutamate synthesis, release, reuptake, and metabolism. They also express functional glutamate receptors and can listen and respond for fast synaptic transmission. This broadens the thoughts of developing excitotoxicity antagonists. In this review, the critical contribution of non-neuronal cells in glutamate excitotoxicity during ischemic stroke will be emphasized in detail, and the latest research progress as well as corresponding therapeutic strategies will be updated at length, aiming to reconceptualize glutamate excitotoxicity in a non-neuronal perspective.

2.
Am J Cancer Res ; 14(3): 1433-1445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590415

RESUMO

Breast cancer (BC) remains a major disease posing a threat to women's health, but the underlying biological interpretation remains largely unknown. Here, we aimed to identify genes associated with breast cancer and analyze their pathophysiological mechanisms based on multi-omics Mendelian randomization (MR). Summary-data-based MR (SMR) was performed to estimate the causal effects of blood and breast mammary tissue expression quantitative trait loci (eQTLs) on BC. External validation analysis was used to validate the identified genes. Integration analyses BC GWAS summaries with eQTLs and DNA methylation QTLs (mQTLs) from the blood were conducted using SMR to prioritize putative blood genes and their regulatory elements associated with BC risk. Finally, two prior genes (ATG10 and RCCD1) from blood tissue reached significant levels in both BCAC (ATG10: ORBRCR = 0.91, PBRCR = 1.29 × 10-11; RCCD1: ORBRCR = 0.90, PBRCR = 3.72 × 10-15) and FinnGen cohorts (ATG10: ORFinnGen = 0.89, PFinnGen = 8.55 × 10-5; RCCD1: ORFinnGen = 0.89, PFinnGen = 2.38 × 10-8). Additionally, those two genes from breast tissues also replicated in both BCAC (ATG10: ORBRCR = 0.95, PBRCR = 1.02 × 10-9; RCCD1: ORBRCR = 0.87, PBRCR = 4.70 × 10-10) and FinnGen cohorts (ATG10: ORFinnGen = 0.93, PFinnGen = 2.38 × 10-4; RCCD1: ORFinnGen = 0.85, PFinnGen = 3.81 × 10-6). Sensitive analysis and external validation analysis validated those two identified genes. Multi-omics MR analysis showed that the SNP signals associated with ATG10 and RCCD1 were significant across the data from BC Genome-wide association study (GWAS), eQTL, and mQTL studies. In conclusion, we identified two priority genes that are potentially associated with BC. These findings improve our limited understanding of the mechanism of BC and shed light on the development of therapeutic agents for treating BC.

3.
Aging (Albany NY) ; 16(5): 4684-4698, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38451181

RESUMO

BACKGROUND: Over the past years, the exact correlation between telomere length and hematological malignancies was still not fully understood. METHODS: We performed a two-sample Mendelian randomization study to investigate the causal relationship between telomere length and hematological malignancies. We selected genetic instruments associated with telomere length. The genetic associations for lymphoid and hematopoietic malignant neoplasms were obtained from the most recent publicly accessible FinnGen study R9 data. Inverse variant weighted (IVW) analysis was adopted as the primary method, and we also performed the weighted-median method and the MR-Egger, and MRPRESSO methods as sensitive analysis. RESULTS: Significant associations have been observed between telomere length and primary lymphoid (IVW: OR = 1.52, P = 2.11 × 10-6), Hodgkin lymphoma (IVW: OR = 1.64, P = 0.014), non-Hodgkin lymphoma (IVW: OR = 1.70, P = 0.002), B-cell lymphoma (IVW: OR = 1.57, P = 0.015), non-follicular lymphoma (IVW: OR = 1.58, P = 1.7 × 10-3), mantle cell lymphoma (IVW: OR = 3.13, P = 0.003), lymphoid leukemia (IVW: OR = 2.56, P = 5.92E-09), acute lymphocytic leukemia (IVW: OR = 2.65, P = 0.021) and chronic lymphocytic leukemia (IVW: OR = 2.80, P = 8.21 × 10-6), along with multiple myeloma (IVW: OR = 1.85, P = 0.016). CONCLUSION: This MR study found a significant association between telomere length and a wide range of hematopoietic malignancies. But no substantial impact of lymphoma and hematopoietic malignancies on telomere length has been detected.


Assuntos
Neoplasias Hematológicas , Doença de Hodgkin , Humanos , Análise da Randomização Mendeliana , Neoplasias Hematológicas/genética , Fatores de Risco , Telômero/genética , Estudo de Associação Genômica Ampla
4.
Biomed Pharmacother ; 170: 116062, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150878

RESUMO

Canine mammary tumors (CMT) can severely compromise the life quality of the affected dogs through local recurrence, distant metastases and ultimately succumb to death. Recently, more attention has been given to the potential antimetastatic effect of maduramicin (MAD) on breast cancer. However, its poor aqueous solubility and toxicity to normal tissues limit its clinical application. Therefore, to address the drawbacks of MAD and enhance its anticancer and antimetastatic effects, MAD-loaded TPGS polymeric micelles (MAD-TPGS) were prepared by a thin-film hydration technique. The optimized MAD-TPGS exhibited excellent size distribution, stability and improved water solubility. Cellular uptake assays showed that TPGS polymer micelles could enhance drug internalization. Moreover, TPGS synergistically improved the cytotoxicity of MAD by targeting mitochondrial organelles, improving reactive oxygen species levels and reducing the mitochondrial transmembrane potential. More importantly, MAD-TPGS significantly impeded the metastasis of tumor cells. In vivo results further confirmed that, in addition to exhibiting excellent biocompatibility, MAD-TPGS exhibited greater antitumor efficacy than free MAD. Interestingly, MAD-TPGS displayed superior suppression of CMT metastasis via tail vein injection compared to oral administration, indicating its suitability for intravenous delivery. Overall, MAD-TPGS could be applied as a potential antimetastatic cancer agent for CMT.


Assuntos
Antineoplásicos , Neoplasias Mamárias Animais , Cães , Animais , Micelas , Polietilenoglicóis , Antineoplásicos/farmacologia , Polímeros , Neoplasias Mamárias Animais/tratamento farmacológico , Vitamina E , Portadores de Fármacos , Linhagem Celular Tumoral
5.
Microbiol Spectr ; : e0207423, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671873

RESUMO

Brucella is a facultative intracellular pathogen that preferentially colonizes reproductive organs and utilizes erythritol as a preferred carbon source for its survival and proliferation. In this study, we identified a virulence-related DeoR-family transcriptional regulator (VdtR) and an erythronate metabolic pathway responsible for four-carbon acid sugar metabolism of D-erythronate and L-threonate in Brucella. We found that VdtR plays an important role in Brucella intracellular survival and trafficking to the endoplasmic reticulum in RAW 264.7 macrophages and in virulence in a mouse model. More importantly, we found that VdtR negatively regulates the erythronate metabolic pathway to promote extracellular proliferation of Brucella, depending on utilization of D-erythronate, an oxidative product of erythritol in the host. In a pregnant mouse model, the erythronate metabolic pathway was shown to cooperate with erythritol metabolism and play a crucial role in Brucella proliferation in the placenta, inducing placentitis and finally resulting in abortion or stillbirth. Our results demonstrate that, in addition to erythritol, erythronate is a preferred carbon source for Brucella utilization to promote its extracellular proliferation. This discovery updates the information on the preferential colonization of reproductive organs by Brucella and provides a novel insight into the Brucella-associated induction of abortion in pregnant animals. IMPORTANCE Brucella is an intracellular parasitic bacterium causing zoonosis, which is distributed worldwide and mainly characterized by reproductive disorders. Erythritol is found in allantoic fluid, chorion, and placenta of aborted animals, preferentially utilized by Brucella to cause infertility and abortion. However, the erythritol metabolism-defected mutant was unable to function as a vaccine strain due to its residual virulence. Here, we found that erythronate, an oxidative product of erythritol in the host, was also preferentially utilized by Brucella relying on the function of a deoxyribonucleoside regulator-family transcriptional regulator VdtR. Erythronate utilization activates VdtR regulation of the erythronate metabolic pathway to promote Brucella extracellular proliferation, inducing placentitis/abortion in mice. Double mutations on Brucella erythritol and D-erythronate metabolisms significantly reduced bacterial virulence. This study revealed a novel mechanism of Brucella infection-induced abortion, thus providing a new clue for the study of safer Brucella attenuated vaccines.

6.
BMC Cancer ; 23(1): 887, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730543

RESUMO

BACKGROUND: The relationship between migraine and breast cancer risk has generated conflicting findings. We attempted to assess the association between migraine and breast cancer risk using Mendelian randomization (MR) analysis. METHODS: We selected genetic instruments associated with migraine from a recently published genome-wide association studies (GWAS). Inverse variant weighted (IVW) analysis was adopted as the main method, and we also performed the weighted-median method and the MR‒Egger, MR pleiotropy residual sum and outlier (MR-PRESSO), and MR Robust Adjusted Profile Score (MR-RAPS) methods as supplements. RESULTS: Our MR suggested that any migraine (AM) was a risk factor for overall breast cancer (IVW: odds ratio (OR) = 1.072, 95% confidence intervals (CI) = 1.035-1.110, P = 8.78 × 10- 5, false discovery rate (FDR) = 7.36 × 10- 4) and estrogen receptor-positive (ER+) breast cancer (IVW: OR = 1.066, 95% CI = 1.023-1.111, P = 0.0024; FDR = 0.0108) but not estrogen receptor-negative (ER-) breast cancer. In its subtype analysis, women with a history of migraine without aura (MO) had an increased risk of ER- breast cancer (IVW: OR = 1.089, 95% CI = 1.019-1.163, P = 0.0118, FDR = 0.0354), and MO was suggestively associated with the risk of overall breast cancer (FDR > 0.05 and IVW P < 0.05). No significant heterogeneity or horizontal pleiotropy was found in the sensitivity analysis. CONCLUSION: This study suggested that women with AM have an increased risk of overall breast cancer and ER + breast cancer. MO was suggestively associated with the risk of overall breast cancer and ER- breast cancer.


Assuntos
Neoplasias da Mama , Transtornos de Enxaqueca , Feminino , Humanos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Mama , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/genética
7.
Environ Pollut ; 336: 122472, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648057

RESUMO

The Beijing Daxing International Airport is a newly opened airport, and a comprehensive emission inventory of air pollution sources has not yet been established. The lack of basic inventory data will cause difficulties in controlling the air quality (AQ) in and around the airport. Based on actual flight data, we established a comprehensive emission inventory (carbon monoxide (CO), nitrogen oxides (NOX), hydrocarbons (HC), sulfur dioxide (SO2), particulate matter (PM), and carbon dioxide (CO2)) at Beijing Daxing International Airport. Furthermore, we evaluated the impact of airport emissions on the AQ of the surrounding areas using the ADMS-Airport model. The results showed that Beijing Daxing International Airport emitted 1.15 E+03, 1.76 E+03, 1.38 E+02, 1.16 E+02, 3.53 E+01, and 3.75 E+05 t of CO, NOX, HC, SO2, PM, and CO2, respectively, from July 1, 2020, to June 30, 2021. Engine exhaust emissions (landing and takeoff [LTO] cycles) dominated all airport pollutant emissions except for PM from the power plant. Among all aircraft types, B738 emitted the most CO2, as it accounted for almost half of all the flights. The AQ simulations showed that the air pollutant diffusion range was concentrated within 15 km of the airport and the surrounding areas. The contribution of airport emissions to NOX concentrations was most apparent under the most unfavorable meteorological conditions. Based on the average pollutant concentration during the study period, the Gu'an Li Hu Primary School station was the most affected. In particular, NOX concentrations at this station were approximately 50% higher in winter than in summer. Currently, the airport's contribution to pollution in the surrounding areas is insignificant. However, with the continuous increase in the number of flights at the airport, its impact on the AQ in the surrounding areas must be addressed in the future.

8.
Molecules ; 28(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446845

RESUMO

At present, it is still a challenge to prepare multifunctional composite nanomaterials with simple composition and favorable structure. Here, multifunctional Fe3O4@nitrogen-doped carbon (N-C) nanocomposites with hollow porous core-shell structure and significant electrochemical, adsorption and sensing performances were successfully synthesized through the hydrothermal method, polymer coating, then thermal annealing process in nitrogen (N2) and lastly etching in hydrochloric acid (HCl). The morphologies and properties of the as-obtained Fe3O4@N-C nanocomposites were markedly affected by the etching time of HCl. When the Fe3O4@N-C nanocomposites after etching for 30 min (Fe3O4@N-C-3) were applied as the anodes for lithium-ion batteries (LIBs), the invertible capacity could reach 1772 mA h g-1 after 100 cycles at the current density of 0.2 A g-1, which is much better than that of Fe3O4@N-C nanocomposites etched, respectively, for 15 min and 45 min (948 mA h g-1 and 1127 mA h g-1). Additionally, the hollow porous Fe3O4@N-C-3 nanocomposites also exhibited superior rate capacity (950 mA h g-1 at 0.6 A g-1). The excellent electrochemical properties of Fe3O4@N-C nanocomposites are attributed to their distinctive hollow porous core-shell structure and appropriate N-doped carbon coating, which could provide high-efficiency transmission channels for ions/electrons, improve the structural stability and accommodate the volume variation in the repeated Li insertion/extraction procedure. In addition, the Fe3O4@N-C nanocomposites etched by HCl for different lengths of time, especially Fe3O4@N-C-3 nanocomposites, also show good performance as adsorbents for the removal of the organic dye (methyl orange, MO) and surface-enhanced Raman scattering (SERS) substrates for the determination of a pesticide (thiram). This work provides reference for the design and preparation of multifunctional materials with peculiar pore structure and uncomplicated composition.


Assuntos
Lítio , Nanocompostos , Porosidade , Análise Espectral Raman , Eletrodos , Carbono , Ácido Clorídrico , Íons , Nitrogênio
9.
Vaccines (Basel) ; 11(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37515088

RESUMO

BACKGROUND: Brucella abortus is the main causative agent for bovine brucellosis. B. abortus A19 is a widely used vaccine strain to protect cows from Brucella infection in China. However, A19 has a similar lipopolysaccharide (LPS) antigen to that of the field virulent Brucella strain, whose immunization interferes with the serodiagnosis of vaccinated and infected animals. [Aim] To develop a novel Brucella DIVA vaccine candidate. STUDY DESIGN AND METHODS: The B. abortus mutant A19mut2 with the formyltransferase gene wbkC is replaced by an acetyltransferase gene wbdR from E. coli O157 using the bacterial homologous recombination technique, generating a modified O-polysaccharide that cannot induce antibodies in mice against wild-type Brucella LPS. The biological phenotypes of the A19mut2 were assessed using a growth curve analysis, agglutination tests, Western blotting, and stress resistance assays. Histopathological changes and bacterial colonization in the spleens of vaccinated mice were investigated to assess the residual virulence and protection of the A19mut2. Humoral and cellular immunity was evaluated by measuring the levels of IgG, IgG subtypes, and the release of cytokines IFN-γ and IL10 in the splenocytes of the vaccinated mice. ELISA coated with wild-type LPS can distinguish mouse antibodies induced by A19 and A19mut2 immunization. RESULTS: The A19mut2 showed a decreased residual virulence in mice, compared to the A19 strain, but induced significant humoral and cellular immune responses, as the A19 immunization did. The protection efficacy of A19mut2 immunization against B. abortus S2308 NalR infection was similar to that of A19 immunization. CONCLUSION: The A19mut2 has potential as a novel DIVA vaccine candidate in the future.

10.
Signal Transduct Target Ther ; 8(1): 183, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37160887

RESUMO

Poly (ADP-ribose) polymerase (PARP) inhibitors are one of the most exciting classes of targeted therapy agents for cancers with homologous recombination (HR) deficiency. However, many patients without apparent HR defects also respond well to PARP inhibitors/cisplatin. The biomarker responsible for this mechanism remains unclear. Here, we identified a set of ribosomal genes that predict response to PARP inhibitors/cisplatin in HR-proficient patients. PARP inhibitor/cisplatin selectively eliminates cells with high expression of the eight genes in the identified panel via DNA damage (ATM) signaling-induced pro-apoptotic ribosomal stress, which along with ATM signaling-induced pro-survival HR repair constitutes a new model to balance the cell fate in response to DNA damage. Therefore, the combined examination of the gene panel along with HR status would allow for more precise predictions of clinical response to PARP inhibitor/cisplatin. The gene panel as an independent biomarker was validated by multiple published clinical datasets, as well as by an ovarian cancer organoids library we established. More importantly, its predictive value was further verified in a cohort of PARP inhibitor-treated ovarian cancer patients with both RNA-seq and WGS data. Furthermore, we identified several marketed drugs capable of upregulating the expression of the genes in the panel without causing HR deficiency in PARP inhibitor/cisplatin-resistant cell lines. These drugs enhance PARP inhibitor/cisplatin sensitivity in both intrinsically resistant organoids and cell lines with acquired resistance. Together, our study identifies a marker gene panel for HR-proficient patients and reveals a broader application of PARP inhibitor/cisplatin in cancer therapy.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Mutações Sintéticas Letais/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Ribossomos
11.
Front Neuroinform ; 17: 1154916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206644

RESUMO

Background: Several observational studies have explored the relationships between multiple sclerosis (MS) and breast cancer; however, whether an association exists remains unknown. Methods: We conducted a meta-analysis of observational studies and Mendelian randomization (MR) based on genetic variants to identify the relationship between MS and breast cancer. The observational studies were searched from PubMed, Embase, Web of Science, and Scopus to assess the relationship between MS and breast cancer from inception to 07 Nov 2022. Moreover, we explored the association between genetically pre-disposed MS and breast cancer risk based on an MR study. The summary analysis for MS from two separate databases [International Multiple Sclerosis Genetics Consortium (IMSGC), FinnGen] and the summary analysis for breast cancer from Breast Cancer Association Consortium. Results: Fifteen cohort studies involving 173,565 female MS patients were included in this meta-analysis. The correlation between MS and breast cancer was not statistically significant [relative ratio (RR) = 1.08, 95% confidence interval (CI) = 0.99-1.17]. In the MR analysis, we did not observe causal associations of genetically determined MS with breast cancer and its subtypes from both the IMSGC and FinnGen datasets. Conclusion: The meta-analysis of observational and MR based on genetic variants does not support the correlation between MS and breast cancer.

12.
J Gastrointest Oncol ; 14(2): 943-951, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37201059

RESUMO

Background: Previous research has reported that variability in glucose levels is associated with a variety of patient characteristics in colon cancer. However, relevant research is still lacking in relation to hepatocellular carcinoma (HCC). Methods: A total of 95 HCC patients with Barcelona Clinic Liver Cancer (BCLC) stage B-C who underwent liver resection at the Eastern Hepatobiliary Surgery Hospital and Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine were included in this study. The patients were divided into 2 groups with type 2 diabetes (T2D) and without T2D. The primary outcome variable was blood glucose variability at 1 month and within 1 year of HCC surgery. Results: In this study, the age of patients with T2D was greater than that of patients without T2D (mean age: 70.3±8.45 vs. 60.4±11.27 years, P=0.031). Compared to the patients without T2D, those with T2D had higher blood glucose measurements within 1 month (33 vs. 7) and 1 year (46.5 vs. 22.5, P<0.001) of surgery. The T2D patients and non-T2D patients did not differ in terms of chemotherapy medication or other characteristics. Among the 95 patients with BCLC stage B-C HCC, those with T2D had higher variability in glucose levels (P<0.001) than those without T2D within 1 month of surgery [standard deviation (SD) =46.43 mg/dL, coefficient of variation (CV) =23.5% vs. SD =21.56 mg/dL, CV =13.21%], and within 1 year of surgery (SD =42.49 mg/dL, CV =26.14% vs. SD =20.45 mg/dL, CV =17.36%). A correlation was found between a lower body mass index and higher variability in glucose levels within 1 month of surgery among patients with T2D [SD (r=-0.431, P<0.05) and CV (r=-0.464, P<0.01)]. A higher preoperative blood glucose level in T2D patients was correlated with a higher blood glucose variability within 1 year of surgery (r=0.435, P<0.01). Variability in glucose levels was weakly correlated with the demographic and clinical characteristics of patients who do not have T2D. Conclusions: HCC patients with T2D in BCLC stage B-C showed greater variability in glucose levels within 1 month and 1 year of surgery. Preoperative hyperglycemia, insulin use, and a lower cumulative dose of steroids were clinical features correlated with a higher variability in glucose levels in T2D patients.

13.
Sci Rep ; 13(1): 7057, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120441

RESUMO

A two-dimensional phononic crystal sensor model with high-quality factor and excellent sensitivity for sensing acetone solutions and operating at 25-45 kHz is proposed. The model for filling solution cavities is based on reference designs of quasi-crystal and gradient cavity structures. The transmission spectrum of sensor is simulated by the finite element method. High-quality factor of 45,793.06 and sensitivity of 80,166.67 Hz are obtained for the acetone concentration with 1-9.1%, and quality factor of 61,438.09 and sensitivity of 24,400.00 Hz are obtained for the acetone concentration range of 10-100%, which indicated the sensor could still achieve high sensitivity and quality factor at operating frequencies from 25 to 45 kHz. To verify the application of the sensor to sensing other solutions, the sensitivity for sound velocity and density is calculated as 24.61 m-1 and 0.7764 m3/(kg × s), respectively. It indicates the sensor is sensitive to acoustic impedance changes of the solution and equally suitable for sensing other solutions. The simulation results reveal the phononic crystal sensor possessed high-performance in composition capture in pharmaceutical production and petrochemical industry, which can provide theoretical reference for the design of new biochemical sensors for reliable detection of solution concentration.

14.
MedComm (2020) ; 4(2): e242, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37009412

RESUMO

Tumor-associated macrophages (TAMs) play critical roles in reprogramming other immune cells and orchestrating antitumor immunity. However, the interplay between TAMs and tumor cells responsible for enhancing immune evasion remains insufficiently understood. Here, we revealed that interleukin (IL)-1ß was among the most abundant cytokines within the in vitro tumor-macrophage coculture system, and enhanced IL-1ß expression was associated with impaired cytotoxicity of CD8+ T cells in human ovarian cancer, indicating the possibility that IL-1ß mediated immunosuppression during tumor-TAMs crosstalk. Mechanistically, we demonstrated that IL-1ß significantly boosted programmed death-ligand 1 (PD-L1) expression in tumor cells via the activation of the nuclear factor-κb signaling cascade. Specifically, IL-1ß released from TAMs was triggered by lactate, the anaerobic metabolite of tumor cells, in an inflammasome activation-dependent manner. IL-1ß sustained and intensified immunosuppression by promoting C-C motif chemokine ligand 2 secretion in tumor cells to fuel TAMs recruitment. Importantly, IL-1ß neutralizing antibody significantly curbed tumor growth and displayed synergistic antitumor efficacies with anti-PD-L1 antibody in tumor-bearing mouse models. Together, this study presents an IL-1ß-centered immunosuppressive loop between TAMs and tumor cells, highlighting IL-1ß as a candidate therapeutic target to reverse immunosuppression and potentiate immune checkpoint blockade.

15.
J Oncol ; 2023: 1453739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793373

RESUMO

Background: Breast and ovarian cancers are common malignancies among women, contributing to a significant disease burden, and are characterized by a high level of genomic instability, owing to the failure of homologous recombination repair (HRR). Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP) could elicit the synthetic lethal effect of tumor cells in patients with homologous recombination deficiency, ultimately achieving a favorable clinical benefit. However, primary and acquired resistance remain the greatest hurdle, limiting the efficacy of PARP inhibitors; thus, strategies conferring or augmenting tumor cell sensitivity to PARP inhibitors are urgently required. Methods: Our RNA-seq data of niraparib-treated and -untreated tumor cells were analyzed by R language. Gene Set Enrichment Analysis (GSEA) was applied to assess the biological functions of GTP cyclohydrolase 1 (GCH1). Quantitative real-time PCR, Western blotting, and immunofluorescence were applied to confirm the upregulation of GCH1 upon niraparib treatment at transcriptional and translational levels. Immunohistochemistry of patient-derived xenograft (PDX)-derived tissue sections further validated that niraparib increased GCH1 expression. Tumor cell apoptosis was detected by flow cytometry, while the superiority of the combination strategy was confirmed in the PDX model. Results: The expression of GCH1 was aberrantly enriched in breast and ovarian cancers and increased after niraparib treatment via JAK-STAT signaling. GCH1 was also demonstrated to be associated with the HRR pathway. Subsequently, the enhancement of the tumor-killing effect of PARP inhibitors induced by GCH1 suppression using siRNA and GCH1 inhibitor was validated by flow cytometry in vitro. Finally, using the PDX model, we further demonstrated that GCH1 inhibitors markedly potentiated PARP inhibitors' antitumor efficacy in vivo. Conclusion: Our results illustrated that PARP inhibitors promote GCH1 expression via the JAK-STAT pathway. We also elucidated the potential relationship between GCH1 and the homologous recombination repair pathway and proposed a combination regimen of GCH1 suppression with PARP inhibitors in breast and ovarian cancers.

16.
Res Vet Sci ; 156: 60-65, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36791578

RESUMO

MG-132, an aldehyde-based peptide proteasome inhibitor (PI) that binds to the proteasome and reversibly inhibits proteasome activity, has been widely used in experimental research. However, it is not clear whether MG-132 has anti-inflammatory effects on liver injury. The molecular mechanism of the anti-inflammatory effect of the PI MG-132 on Con A-induced acute liver injury (ALI) mice was investigated by ELISA, HE, q RT-PCR, and IHC. The results showed that the serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and TNF-α and IL-6 contents of mice in the high and medium dose groups were reduced compared with those in the ALI group. The superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels in liver tissues were significantly increased, and the malondialdehyde (MDA) content was decreased. The pathological sections of mice in the ALI group showed typical ALI manifestations such as significant central venous stasis of liver tissues, cell swelling, and inflammatory cell infiltration. The pathological damage of liver tissues was relieved significantly in the three dose groups, especially in the high-dose group. The transcriptional level of TLR4/NF-κB pathway key factors mRNA was significantly reduced, and the expression of TLR4 and NF-κB P65 protein in liver tissues was significantly and positively correlated with the contents of TNF-α and IL-1ß (p < 0.01). Our findings suggest that MG-132 can alleviate the inflammatory response to Con A-induced ALI and exert a hepatoprotective effect, and its anti-inflammatory effect is related to the inhibition of TLR4/NF-κB signaling pathway activation.


Assuntos
NF-kappa B , Inibidores de Proteassoma , Camundongos , Animais , NF-kappa B/metabolismo , Inibidores de Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Receptor 4 Toll-Like/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Fígado/metabolismo , Anti-Inflamatórios/farmacologia
17.
Mol Cancer Ther ; 22(4): 447-458, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36780236

RESUMO

Therapy-induced senescence (TIS) is common in tumor cells treated with PARP inhibitors (PARPis) and can serve as a promising target for improving PARPi efficacy. However, whether stromal components within the tumor microenvironment undergo TIS caused by PARPis and contribute to consequential treatment failure remain unclear. We previously revealed that PARPis triggered a senescence-like secretory phenotype in stromal fibroblasts. Here, we further explored PARPi-induced senescence in the stroma, its contribution to PARPi resistance, and opportunities to leverage stromal TIS for improved PARPi sensitivity. In this study, we demonstrated that tumor tissues from patients treated with neoadjuvant PARPis showed a significant senescence-like phenotype in the stroma. Moreover, PARPi-induced senescent cancer-associated fibroblasts (CAFs) displayed a senescence-associated secretory phenotype (SASP) profile that was sufficient to induce tumor resistance to PARPis in both homologous recombination-deficient (HRD) and -proficient ovarian cancer cells. Using the GLAD4U database, we found that bepotastine, an approved H1-antihistamine, inhibited the SASP of PARPi-primed CAFs at clinical serum concentrations. We further demonstrated that bepotastine attenuated fibroblast-facilitated tumor resistance to PARPis in three-dimensional organotypic cultures and HRD-positive patient-derived xenograft models. Mechanistically, bepotastine suppressed PARPi-triggered SASP by inhibiting NF-κB signaling independent of the histamine H1 receptor. Taken together, our results highlight the importance of stromal TIS and SASP in PARPi resistance, and targeting SASP with bepotastine may be a promising therapeutic option for improving PARPi sensitivity in ovarian cancer.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Feminino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , NF-kappa B , Fibroblastos Associados a Câncer/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fibroblastos , Senescência Celular , Microambiente Tumoral
18.
Cancers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36765541

RESUMO

(1) Background: Ovarian cancer (OV) presents a high degree of malignancy and a poor prognosis. Cell death is necessary to maintain tissue function and morphology. Cuproptosis and ferroptosis are two novel forms of death, and we look forward to finding their relationship with OV and providing guidance for treatment. (2) Methods: We derived information about OV from public databases. Based on cuproptosis-related and ferroptosis-related genes, a risk model was successfully constructed, and exceptional subtypes were identified. Next, various methods are applied to assess prognostic value and treatment sensitivity. Besides, the comprehensive analysis of the tumor environment, together with immune cell infiltration, immune function status, immune checkpoint, and human HLA genes, is expected to grant assistance for the prognosis and treatment of OV. (3) Results: Specific molecular subtypes and models possessed excellent potential to predict prognosis. Immune infiltration abundance varied between groups. The susceptibility of individuals to different chemotherapy drugs and immunotherapies could be predicted based on specific groups. (4) Conclusions: Our molecular subtypes and risk model, with strong immune prediction and prognostic prediction capabilities, are committed to guiding ovarian cancer treatment.

19.
J Sci Food Agric ; 103(5): 2473-2482, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36658470

RESUMO

BACKGROUND: Myosin is the most important component of myofibrillar protein, with excellent gelling properties. To date, heating treatment remains the mainstream method for forming gel in meat products, and it has the most extensive application in the field of meat industry. However, at present, there are few reports on the effects of heating rates on myosin self-assembly and aggregation behavior during heating treatment. RESULTS: The present study aimed to investigate the effects of different heating rates (1, 2, 3 and 5 °C min-1 ) on the self-assembly behavior, physicochemical, structural and gelling properties of myosin. At the lowest heating rate of 1 °C min-1 , the myosin gel had a dense microstructure, the highest elastic modulus (G') and water holding capacity compared to higher heating rates (2, 3 and 5 °C min-1 ). At higher temperatures (40, 45 °C), the surface hydrophobicity, turbidity, particle size distribution and self-assembly behavior of myosin in pre-gelling solutions showed that myosin had sufficient time to denature, underwent full structure unfolding before aggregation at the heating rate of 1°C min-1 , and formed regular and homogeneous spherical aggregates. Therefore, the myosin gel also had a better three-dimensional network. CONCLUSION: The heating rates had an important effect on the quality of myosin gels, and had theoretical implications for improving the quality of meat gel products. © 2023 Society of Chemical Industry.


Assuntos
Calefação , Miosinas , Animais , Bovinos , Miosinas/química , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Géis/química
20.
Plant Physiol ; 191(1): 591-609, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36102815

RESUMO

ß-Amylase (BAM)-mediated starch degradation is a main source of soluble sugars that help plants adapt to environmental stresses. Here, we demonstrate that dehydration-induced expression of PtrBAM3 in trifoliate orange (Poncirus trifoliata (L.) Raf.) functions positively in drought tolerance via modulation of starch catabolism. Two transcription factors, PtrABF4 (P. trifoliata abscisic acid-responsive element-binding factor 4) and PtrABR1 (P. trifoliata ABA repressor 1), were identified as upstream transcriptional activators of PtrBAM3 through yeast one-hybrid library screening and protein-DNA interaction assays. Both PtrABF4 and PtrABR1 played a positive role in plant drought tolerance by modulating soluble sugar accumulation derived from BAM3-mediated starch decomposition. In addition, PtrABF4 could directly regulate PtrABR1 expression by binding to its promoter, leading to a regulatory cascade to reinforce the activation of PtrBAM3. Moreover, PtrABF4 physically interacted with PtrABR1 to form a protein complex that further promoted the transcriptional regulation of PtrBAM3. Taken together, our finding reveals that a transcriptional cascade composed of ABF4 and ABR1 works synergistically to upregulate BAM3 expression and starch catabolism in response to drought condition. The results shed light on the understanding of the regulatory molecular mechanisms underlying BAM-mediated soluble sugar accumulation for rendering drought tolerance in plants.


Assuntos
Fatores de Transcrição , beta-Amilase , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resistência à Seca , Amilases/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Carboidratos , Secas , Açúcares , beta-Amilase/genética , Amido/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...